Runge-Kutta Methods for solving ODEs

ODE Solvers

Runge Kutta

* Euler Method (1st order)

* Midpoint Method (2nd order)

 RK4 (4th order) - SciPy library

 RKA45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver

Symplectic
e Euler-Cromer-Aspel Method (1st order)
o Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems

Stiff Solvers

e Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations
 BDF (order1-5) - SciPy library

Euler Method
(1st order Runge Kutta)

Euler Method

— =f0n0) | Xy =%, S, 1) Al

dx
dt
slope = — =f(x,,1,) -\

xn+1

_—

x(?)

true path

Approximate x(f) as a Taylor series:

dx d*x ,
x(t, + AN ~x,+ | —) At+| — | Ar-+...
dt t dt?
n t

n

The Euler method is equivalent to

Including the constant term and the
linear term

The Euler method iIs said to be
first-order accurate

S.H.O. Derivative Function

Returns derivatives: def deriv_sho(t, y, m, K):
dx dv
— =V — = — (k/m)x # extract variables from y array
dt dt L
X = yl[0] # position
* Passed parameters: v = y[1] # velocity
O t=time | |
o # calculate derivatives
o y=array containing x & v dxdt = v
O M= mass dvdt = —-k/m%Xx

o k = spring constant - |
return derivatives in a numpy array

* Returned value: return np.array([dxdt, dvdt])
o array containing dx/dt & dv/dt

Multi-Variable Euler Function

Performs numerical integration using
the Euler method
* Passed parameters:
o deriv = derivative function
o yO = array of initial conditions
tmax = max time of integration
dt = time step
params = array of parameters
to pass to deriv() function
* Returned values:
o t=array oftimes
o y=1D or 2D array containing
solution (each column
represents different variable)

O O O

#H##H##H Multi-Variable Euler Integration #########

def Euler_Vec(deriv, y@, tmax, dt, params):

#H####H## Create Arrays

HHAFHHHAH

determine the number of variables in the system from initial
nvar = 1 if not isinstance(y®, np.ndarray) else y@.size

N = int(tmax/dt)+1
y = np.zeros((N,nvar))
t = np.zeros(N)
if nvar == 1:
y[0] = yoO
else:
y[0,:] = yo

number of steps in simulation
array to store y values
array to store times

assign 1initial value 1f single var

assign vector initial values 1f mL

Hi######E# Loop to implement the Euler update rule #########

for n in range(N-1):
f = deriv(tin], ylnl, *params)

y[n+1]
t[n+1]

return t, vy

yIn] + fxdt
t[n] + dt

Plot solution and error

Plots numerical solution and analytic

solution In upper plot.
Plots error in the lower plot.
* Passed parameters:
O x = solution dor position
O y_true = analytic solution
o t=time values
O title =string containing title
* Returned values:
© None

def plot_solution(x, x_true, t, title):

err = np.abs(x-x_true) # calculate numerical error

#H####H###R Plot Solution #######H##

plt.subplot(2,1,1)
plt.plot(t, x, label='Numerical')
plt.plot(t, x_true, '—--', label='Analytic')

plt.xlabel('t")

plt.ylabel('x")

plt.title(title)
plt. legend()

#H##HH#A#H Plot Error #######H#

plt.subplot(2,1,2)
plt.plot(t, err)
plt.xlabel('t")
plt.ylabel('error"')

lower subplot
plot position

plt.show() # display the plot

upper s
plot po
pnalyti
label the x and y axes

give the plot a title
display the legend

label the x and y axes

AAH###HRE Parameters HHAHHHHHHH

Put it all together: Use the T oo
= spring constant
i tmax = 50 # maximum time

Euler Method to numerically A o
i 7 x0 =1 # initial position
Integrate the Slmple v =0 # initial velocity
Harmonlc osclllator params = np.array([m,k]) # bundle derivative parameters

y® = np.array([x0,vol) # bundle initial conditions tc

#########E Perform Euler Integration ######H###

t, vy = Euler(deriv_sho, y@, tmax, dt, params)
X =y[:,0] # extract positions
v =yl[:,1] # extract velocities

#H#R##### Analytic Solution #########

omega = np.sqrt(k/m)
x_true = x@ * np.cos(omegaxt)

#n#r#####E Plot Solution ###t#####

plot_solution(x, x_true, t, "SHO - Euler")

With a time step of

At = 0.01, the absolute
error is around 0.3 after
8 oscillations.

error

1.0 - A /
0.5 1
an — Numerical
' ~ == Analytic
-0.5 1
—-1.0 A1 v y v J
T T T T T T
0 10 20 30 40 50
0.2 1
0.1 1
0.0 1_l T T T T —
0 10 20 30 40 50

SHO - Euler

Midpoint Method
(2nd order Runge Kutta)

How to improve Euler method?

X +1 — Xn +]CnAl-

n

Jn =S5 1)

slope f, calculated from x, is too steep

- ~ x(7)

slope f,. 1, calculated in the middle of
the time step would be better

[

Midpoint Method: estimate the slope at the midpoint of the time

step "

E =f(-x9 t)

I Inp12 It ! Ly Livin T

Xp12 = Xy Jor12 = T Eg1/20 Lag12) Xpp1 = X, + [0AL

Midpoint Method: estimate the slope at the midpoint of the time
step

dx

E =f(x9 t)

Update rule:

Jn = S0 1)

Jor12 =JXp1/25 biv12)

Midpoint Method is 2nd-Order Accurate

At
xn+1 — Xn + (Vn + an7> At

At
Xpt12 = Xy TV "y
|
At _ - 2
Vo=V + a5 X, 1 =X, +v,At+ 2anAt

X411 =X, +V At '
n+1 n+1/2 Compare to Taylor series for x(?):

d d*x
Vitl = Vo T Gy pAl x(t, + Ar) = x, + (_x) At + () At* + ...
! t

dr?

_]

Midpoint method includes the O(Af?) term

PHYS 365 - ASTROPHYSICS

Midpoint Method in Action

At

Vor12 =Yt 1,) fu = ay,

X, =X, +f(x,,t)Af

~

for n in range(N-1):
f = deriv(t[n], y[nl, *params)

Yo+l = Vn +fn+1/2At fn+1/2 = AaAy, 110

for n in range(N-1):
f = # 77?7

y_half # 777
277

y [n+1] # 277

tin+l] = tln] + dt

y [n+1] yIn] + fxdt
t[n+1l] = t[n] + dt

Modify the Euler_vec() function to apply the Midpoint Method

def Midpointfderiv, y@, tmax, dt, params):

. 4

#iha#n#t Create Arrays HH#HHHHH#HH

determine the number of variables in the system from initial conditions
nvar = 1 if not isinstance(y®, np.ndarray) else y@.size

N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
t = np.zeros(N) # array to store times
if nvar ==
y[@] = yo # assign initial value if single variable
else:
yl@,:] = y0 # assign vector initial values i1f multivariable

#iw#A#### Loop to 1mplement the Midpoint update rule ####H#####

for n in range(N-1):

' f = # YOUR CODE HERE # evaluate derivatives on whole step
y_half = # YOUR CODE HERE # half step
f = # YOUR CODE HERE # evaluate derivatives on half step
y[n+l] = # YOUR CODE HERE # whole step
t[n+1] = t[n] + dt

return t, vy

Modify the Euler_vec() function to apply the Midpoint Method

def Midpointideriv, yd, tmax, dt, params):

. 4

#a#AA#AAH Create Arrays #A#H#####H

determine the number of variables in the system from initial conditions
nvar = 1 if not isinstance(y@, np.ndarray) else y@.size

N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
t = np.zeros(N) # array to store times
if nvar == 1:
yl@] = yo # assign initial value if single variable
else:
y[@,:] = yo # assign vector initial values if multivariable

Y Loop to implement the Euler update rule ####HHH#H1HE

for n in range(N-1):

- f = deriv(tIn], y[n], xparams) # evaluate derivatives on whole step
Solution =P v_half = yIn] + f % dt/2 # half step
f = deriv(t[n]+dt/2, y_half, xparams) # evaluate derivatives on half step
yln+l] = y[n] + fxdt # whole step

t[n+1] = t[n] + dt

return t, y

Apply Midpoint Method to the Simple Harmonic Oscillator

Run your code with the L0
same parameters used 0.5 -
for the Euler integration: X 0.0 -
« dt = 0.01 05 -
« tmax = 50 -1.0 -

0.0008 -
Error reduced from 0.0006 -
0.3to4x 10~ g 0.0004 -

0.0002 -

0.0000 -

SHO - Midpoint
— Numerical
-~ == Analytic
10 20 30 40 50
10 20 30 40 50

Midpoint Method is
comperable to the Euler-
Cromer-Aspel method
at large time steps, and
2-3 orders of magnitude
more accurate at small
time steps

Error

102 A
101 -
100

10-1 -

10-2 -

10-3 -

104 -

1075 -

10-6 -

10-7 -

10-8 -

10-9 -

10-10 -

10-11

10-12 4

10-13 -

10-14 4

10—15 -

SHO - Position Error

—&@— Euler
—&— Aspel

—&— Midpoint

1073 1072 107! 10° 101!

computation time (s)

102

SHO - Energy Error

—&@— Euler
—&— Aspel

—&— Midpoint

1073 1072 107! 10Y 101!

computation time (s)

102

4th order Runge Kutta

Runga-Kutta RK4 Method (4th-Order Accurate)

kl =f(tnayn)

b =f(6+25y + A
2 n) » Vn)
b=f(6+20y + 2
3 n N » Yn N
ky = f (1, + At y, + k3 Ar)

At
yn_|_1 — yn + ? (kl + 2k2 + 2k3 + k4)

Yo+ hk3

to to+h/2 to+h

PHYS 365 - ASTROPHYSICS

Runga-Kutta RK4 Method (4th-Order Accurate)

kl :f(tnayn)
for n in range(N-1):
At k
k2:f<tn+_,yn+_1At) k1l ¥ 77
2 2 k2 ?7

?7?

B At sz k3
k3_f tn+73yn+? J k4

ky = f (1, + At y, + ks Ar)

At t[n+1]
yn_|_1 =yn+? (kl +2k2+2k3 +k4)

??
y [n+1] ?7?

PHYS 365 - ASTROPHYSICS

Modify the midpoint() function to apply the RK4 Method

def |RK4[(deriv, y@, tmax, dt, params):

/V HHsHEAEEE Create Arrays HAS#BH#HS

determine the number of variables in the system from initial conditions
nvar = 1 if not isinstance(y®, np.ndarray) else y@.size

N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
t = np.zeros(N) # array to store times
if nvar ==
y[@] = y@ # assign initial value if single variable
else:
y[0,:] = yo # assign vector initial values if multivariable

#HR#ER#ERE Loop to implement the Euler update rule #####H#H#

for n in range(N-1):
K1 = # YOUR CODE HERE
K2 # YOUR CODE HERE
—l k3 # YOUR CODE HERE
k4 = # YOUR CODE HERE
y [n+1] # YOUR CODE HERE

tln+l] = tln]l + dt

return t, vy

Modify the midpoint() function to apply the RK4 Method

def

. 4

RK4(deriv, y@, tmax, dt, params):

#HH#nA#A#H Create Arrays ###HHHHA

determine the number of variables in the system from initial conditions
nvar = 1 if not isinstance(y@, np.ndarray) else y@.size

N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
t = np.zeros(N) # array to store times
if nvar == 1:
yl@] = yo # assign initial value 1f single variable
else:
y[0,:] = yo # assign vector initial values if multivariable

Hr#####H#H# Loop to implement the Euler update rule ####E####

for n in range(N-1):

Solution =l

kl = deriv(t]
k2 = deriv(t]|
k3 = deriv(t]|
k4 = deriv(t[n
y[n+1l] = y[n]

= 35 3 3

, *params) x dt

+0.5%k1, *kparams) x dt
+0.5%k2, xparams) x dt
1, yInl+k3, *params) * dt

+ (1/6)x(kl + 2xk2 + 2xk3 + k4)

47

47

-
-
.
-
-
-
-

n
n
n
n
6

y
y
1, yl
Vi
1

tln+1] = t[n] + dt

return t, vy

Apply RK4 Method to the Simple Harmonic Oscillator

Run your code with the
same parameters used
for the Euler integration:

« dt = 0.01

e tmax = 50

Error reduced from
0.3to4x107°

SHO - RK4
1.0 4
O.S /\ /
a0 - Numerical
' ~ == Analytic
—1.0] 1 1 1 1 1
1e99 10 20 . 30 40 50
4 4
3 -
5, |
)
1 -
01

20 30

Comparison of Runge Kutta Methods

— Exact solution
-o— 4th order Runge-Kutta

—»- 2nd order Runge-Kutta
- Explicit Euler (half step length)
204 - Explicit Euler

10 -

Q1 -

Application: Simple Pendulum

Simple Pendulum

Consider a pendulum consisting of a mass m
attached to a pivot with a massless rod

° M = Mmass
L = distance from pivot to mass

* ¢ = angle from point where mass hangs straight
down

Rotational version of Newton’s 2nd law: 7= Ia

« Torque of weight of the mass around pivot: 7= — (Lsin¢@)mg

- Rotational inertia of point mass I = mL?

Solve for the angular acceleration: —(Lsing)mg = mL*a = o= — % SIn ¢

Simple Pendulum

Our 2nd-order equation of motion may be broken
up iInto two 1st-order equations:

o _ o do

~ =¥0, = — —sIin ¢

dr L

where we introduced the angular velocity w.

Thus, we have a pair of coupled, first-order
ODEs with variables ¢ and w.

Solve this system of equations using your RK4 integration scheme for

w, = 0 and: b, = 45°,90°,135°,179°

