
Runge-Kutta Methods for solving ODEs



Runge Kutta  
• Euler Method (1st order) 
• Midpoint Method (2nd order) 
• RK4 (4th order) - SciPy library 
• RK45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver 

Symplectic 
• Euler-Cromer-Aspel Method (1st order) 
• Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems 

Stiff Solvers 
• Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations 
• BDF (order 1-5) - SciPy library

ODE Solvers



Euler Method 
(1st order Runge Kutta)



Euler Method
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The Euler method is said to be    
first-order accurate

The Euler method is equivalent to 
including the constant term and the 
linear term 
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S.H.O. Derivative Function
Returns derivatives: 

• Passed parameters: 
t = time 
y = array containing x & v 
m = mass 
k = spring constant 

• Returned value: 
array containing  dx/dt & dv/dt

dx
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= v
dv
dt

= − (k/m)x



Multi-Variable Euler Function

Performs numerical integration using 
the Euler method 
• Passed parameters: 

deriv = derivative function 
y0 = array of initial conditions 
tmax = max time of integration 
dt = time step 
params = array of parameters 
to pass to deriv() function 

• Returned values: 
t = array of times 
y = 1D or 2D array containing 
solution (each column 
represents different variable)



Plot solution and error

Plots numerical solution and analytic 
solution in upper plot. 
Plots error in the lower plot. 
• Passed parameters: 

x = solution dor position 
y_true = analytic solution 
t = time values 
title =string containing title 

• Returned values: 
None



Put it all together:  Use the 
Euler Method to numerically 
integrate the Simple 
Harmonic Oscillator



With a time step of 
, the absolute 

error is around 0.3 after 
8 oscillations.

Δt = 0.01



Midpoint Method 
(2nd order Runge Kutta)



How to improve Euler method?
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Midpoint Method:  estimate the slope at  the midpoint of the time 
step
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Midpoint Method:  estimate the slope at  the midpoint of the time 
step

fn+1/2 = f(xn+1/2, tn+1/2)

Update rule:

fn+1/2



PHYS 365 - ASTROPHYSICS

Midpoint Method is 2nd-Order Accurate
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Midpoint method includes the  term O(Δt2)
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Midpoint Method in Action

yn+1 = yn + fn+1/2Δt
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Midpoint rule:

xn+1 = xn + f(xn, tn)Δt

Euler rule



Modify the Euler_vec() function to apply the Midpoint Method



Modify the Euler_vec() function to apply the Midpoint Method

Solution



Apply Midpoint Method to the Simple Harmonic Oscillator 

Run your code with the 
same parameters used 
for the Euler integration: 

• dt = 0.01 

• tmax = 50

Error reduced from 
0.3 to 4 × 10−4



Midpoint Method is 
comperable to the Euler-
Cromer-Aspel method 
at large time steps, and 
2-3 orders of magnitude 
more accurate at small 
time steps



4th order Runge Kutta



PHYS 365 - ASTROPHYSICS

Runga-Kutta RK4  Method (4th-Order Accurate)

k1 = f(tn, yn)

k2 = f (tn +
Δt
2

, yn +
k1

2
Δt)

k3 = f (tn +
Δt
2

, yn +
k2

2
Δt)

k4 = f (tn + Δt, yn + k3Δt)
yn+1 = yn +

Δt
6 (k1 + 2k2 + 2k3 + k4)



PHYS 365 - ASTROPHYSICS

Runga-Kutta RK4  Method (4th-Order Accurate)
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Modify the midpoint() function to apply the RK4 Method



Modify the midpoint() function to apply the RK4 Method

Solution



Apply RK4 Method to the Simple Harmonic Oscillator 

Run your code with the 
same parameters used 
for the Euler integration: 

• dt = 0.01 

• tmax = 50

Error reduced from 
0.3 to 4 × 10−9



Comparison of Runge Kutta Methods 



Application:  Simple Pendulum



Simple Pendulum

Consider a pendulum consisting of a mass m 
attached to a pivot with a massless rod 
• m = mass 
• L = distance from pivot to mass 
• angle from point where mass hangs straight 

down
ϕ = m

ϕ

F = mg

pivot

• Torque of weight of the mass around pivot:     
• Rotational inertia of point mass 

τ = − (L sin ϕ)mg
I = mL2

Rotational version of Newton’s 2nd law:   τ = Iα

d2ϕ
dt2

= −
g
L

sin ϕ

L

Solve for the angular acceleration:    −(L sin ϕ)mg = mL2α α = −
g
L

sin ϕ



Simple Pendulum
Our 2nd-order equation of motion may be broken 
up into two 1st-order equations:

m

ϕ

F = mg

pivot

Thus, we have a pair of coupled, first-order 
ODEs with variables  and .ϕ ω

dϕ
dt

= ω
L

Solve this system of equations using your RK4 integration scheme for 
 and:ω0 = 0

dω
dt

= −
g
L

sin ϕ

where we introduced the angular velocity .ω

ϕ0 = 45∘, 90∘, 135∘, 179∘


