
Runge-Kutta Methods for solving ODEs

Runge Kutta
• Euler Method (1st order)
• Midpoint Method (2nd order)
• RK4 (4th order) - SciPy library
• RK45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver

Symplectic
• Euler-Cromer-Aspel Method (1st order)
• Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems

Stiff Solvers
• Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations
• BDF (order 1-5) - SciPy library

ODE Solvers

Euler Method
(1st order Runge Kutta)

Euler Method

xn+1

tn+1

xn

tn

x(t)

x

t

xn+1 = xn + f(xn, tn)Δt
Approximate as a Taylor series: x(t)

x(tn + Δt) ≈ xn + (dx
dt)

tn

Δt + (d2x
dt2)

tn

Δt2 + . . .

The Euler method is said to be
first-order accurate

The Euler method is equivalent to
including the constant term and the
linear term

dx
dt

= f(x, t)

slope =
dx
dt

= f(xn, tn)

Δt

true path

S.H.O. Derivative Function
Returns derivatives:

• Passed parameters:
t = time
y = array containing x & v
m = mass
k = spring constant

• Returned value:
array containing dx/dt & dv/dt

dx
dt

= v
dv
dt

= − (k/m)x

Multi-Variable Euler Function

Performs numerical integration using
the Euler method
• Passed parameters:

deriv = derivative function
y0 = array of initial conditions
tmax = max time of integration
dt = time step
params = array of parameters
to pass to deriv() function

• Returned values:
t = array of times
y = 1D or 2D array containing
solution (each column
represents different variable)

Plot solution and error

Plots numerical solution and analytic
solution in upper plot.
Plots error in the lower plot.
• Passed parameters:

x = solution dor position
y_true = analytic solution
t = time values
title =string containing title

• Returned values:
None

Put it all together: Use the
Euler Method to numerically
integrate the Simple
Harmonic Oscillator

With a time step of
, the absolute

error is around 0.3 after
8 oscillations.

Δt = 0.01

Midpoint Method
(2nd order Runge Kutta)

How to improve Euler method?

dx
dt

= f(x, t) xn+1xn+1xn+1

tn+1

xn

tn

x(t)

x

t

xn+1 = xn + fnΔt

fn = f(xn, tn)

Δt

fn

slope calculated from is too steepfn xn

slope calculated in the middle of
the time step would be better

fn+1/2

tn+1

xn

tn

x(t)

x

t

xn+1/2

tn+1

xn

tn

x(t)

x

ttn+1/2

xn+1 = xn + fn+1/2Δt

xn+1

dx
dt

= f(x, t)

xn+1/2 = xn + fn
Δt
2

fn = f(xn, tn)

Midpoint Method: estimate the slope at the midpoint of the time
step

xn+1/2

tn+1/2

Δt/2

fn
xn+1/2

tn+1/2 tn+1

xn

tn

x(t)

x

t

fn+1/2

fn+1/2 = f(xn+1/2, tn+1/2)

xn+1/2

tn+1

xn

tn

x(t)

x

ttn+1/2

xn+1 = xn + fn+1/2Δt
xn+1

dx
dt

= f(x, t)

xn+1/2 = xn + fn
Δt
2

fn = f(xn, tn)

Midpoint Method: estimate the slope at the midpoint of the time
step

fn+1/2 = f(xn+1/2, tn+1/2)

Update rule:

fn+1/2

PHYS 365 - ASTROPHYSICS

Midpoint Method is 2nd-Order Accurate

xn+1 = xn + (vn + an
Δt
2) Δt

xn+1 = xn + vnΔt +
1
2

anΔt2

Compare to Taylor series for :x(t)

x(tn + Δt) ≈ xn + (dx
dt)

tn

Δt + (d2x
dt2)

tn

Δt2 + . . .

Midpoint method includes the term O(Δt2)

xn+1 = xn + vn+1/2Δt

xn+1/2 = xn + vn
Δt
2

vn+1/2 = vn + an
Δt
2

vn+1 = vn + an+1/2Δt

Midpoint Method in Action

yn+1 = yn + fn+1/2Δt

yn+1/2 = yn + fn
Δt
2

fn = ayn

fn+1/2 = ayn+1/2

Midpoint rule:

xn+1 = xn + f(xn, tn)Δt

Euler rule

Modify the Euler_vec() function to apply the Midpoint Method

Modify the Euler_vec() function to apply the Midpoint Method

Solution

Apply Midpoint Method to the Simple Harmonic Oscillator

Run your code with the
same parameters used
for the Euler integration:

• dt = 0.01

• tmax = 50

Error reduced from
0.3 to 4 × 10−4

Midpoint Method is
comperable to the Euler-
Cromer-Aspel method
at large time steps, and
2-3 orders of magnitude
more accurate at small
time steps

4th order Runge Kutta

PHYS 365 - ASTROPHYSICS

Runga-Kutta RK4 Method (4th-Order Accurate)

k1 = f(tn, yn)

k2 = f (tn +
Δt
2

, yn +
k1

2
Δt)

k3 = f (tn +
Δt
2

, yn +
k2

2
Δt)

k4 = f (tn + Δt, yn + k3Δt)
yn+1 = yn +

Δt
6 (k1 + 2k2 + 2k3 + k4)

PHYS 365 - ASTROPHYSICS

Runga-Kutta RK4 Method (4th-Order Accurate)

k1 = f(tn, yn)

k2 = f (tn +
Δt
2

, yn +
k1

2
Δt)

k3 = f (tn +
Δt
2

, yn +
k2

2
Δt)

k4 = f (tn + Δt, yn + k3Δt)
yn+1 = yn +

Δt
6 (k1 + 2k2 + 2k3 + k4)

Modify the midpoint() function to apply the RK4 Method

Modify the midpoint() function to apply the RK4 Method

Solution

Apply RK4 Method to the Simple Harmonic Oscillator

Run your code with the
same parameters used
for the Euler integration:

• dt = 0.01

• tmax = 50

Error reduced from
0.3 to 4 × 10−9

Comparison of Runge Kutta Methods

Application: Simple Pendulum

Simple Pendulum

Consider a pendulum consisting of a mass m
attached to a pivot with a massless rod
• m = mass
• L = distance from pivot to mass
• angle from point where mass hangs straight

down
ϕ = m

ϕ

F = mg

pivot

• Torque of weight of the mass around pivot:
• Rotational inertia of point mass

τ = − (L sin ϕ)mg
I = mL2

Rotational version of Newton’s 2nd law: τ = Iα

d2ϕ
dt2

= −
g
L

sin ϕ

L

Solve for the angular acceleration: −(L sin ϕ)mg = mL2α α = −
g
L

sin ϕ

Simple Pendulum
Our 2nd-order equation of motion may be broken
up into two 1st-order equations:

m

ϕ

F = mg

pivot

Thus, we have a pair of coupled, first-order
ODEs with variables and .ϕ ω

dϕ
dt

= ω
L

Solve this system of equations using your RK4 integration scheme for
 and:ω0 = 0

dω
dt

= −
g
L

sin ϕ

where we introduced the angular velocity .ω

ϕ0 = 45∘, 90∘, 135∘, 179∘

